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A Fuzzy System for Uncertain Data Modeling  
Yogesh Mohan, Sukhvir Singh, Kishori Lal Bansal, Mohit Kumar 

 

Abstract— This text presents a fuzzy rules based system for modeling the relationships between inputs and output data in the presence of 
uncertainties. The fuzzy system is designed by separating the uncertainties from the data using fuzzy filtering algorithms. A stochastic 
modeling of the uncertainties helps in designing the fuzzy system to approximate the uncertain relationships. The proposed fuzzy model 
offers the followings: 1) predicts the output value for the given inputs assuming that there were no uncertainties in the input-output 
behavior; 2) assesses the worst effect of uncertainties on the model-predicted output value via predicting upper and lower limits on the 
output; 3) predicts the output value for the given inputs taking mathematically into account the underlying uncertainties (whose 
probabilistic-model was extracted from the data) in a sensible way. The paper illustrates through an example that the proposed fuzzy 
system is a useful modeling tool in presence of uncertainties.  
Index Terms— Data Modeling, Fuzzy filtering, Parameters estimation, Uncertainties.   

 

——————————      —————————— 

1 INTRODUCTION                                                                     
HE use of fuzzy systems in data driven modeling is a 
widely studied topic [49], [44], [45], [43], [14], [48], [38], 
[12], [11], [3], [2], [1], [46], [47], [15], [50], [39], [22], [37] 

and [21]. A real-world modeling problem typically involves 
the uncertainties and the fuzzy systems based on fuzzy set 
theory [54], [55] are considered suitable tools for dealing with 
the uncertainties. The efforts has been made recently some 
efforts to develop fuzzy filtering based methods for a proper 
handling of the uncertainties typically involved in real-world 
modeling applications related to the life sciences [34], [18], 
[35], [36], [28], [19], [30], [29], [32], [33].  

It is assumed that input variables ( )1 2, , , nx x x are related 

to the output variable y through a mapping ( )=y f x ;  where 

[ ]1 2= ∈ n
nx x x x R is the input vector and the modeling aim is 

to identify the unknown function .f The fuzzy modeling is 
based on the assumption that there exist an ideal set of model 
parameters ∗w  such that model output ( ); ∗M x w to input x is 
an approximation of the output value .y However, it may not 
be possible, for a given type and structure of the model ,M to 
identify perfectly the inputs-output relationships. The part of 
the input-output mappings that can’t be modeled, for a given 
type and structure of the model, is what we refer to as the un-
certainty. Mathematically, we have  

( ); ∗= +y M x w n ;      (1) 
where n is termed as disturbance or noise in system identifica-
tion literature. However, we refer n , in context to real-world 
modeling applications; to as uncertainty to emphasize that the 

uncertainties regarding optimal choices of the model and er-
rors in output data resulted in the additive disturbance in(1).  
For an illustration, the authors in [18], in context to subjective 
workload score modeling, explain the reasons giving rise to 
the uncertainty. 

A robust (towards uncertainty n ) identification of model 
parameters ∗w  using available input-output data pairs 

( ) ( ){ } 0,1,
,

= j
x j y j is obviously a straightforward approach to 

handle the uncertainty. Several robust methods of fuzzy iden-
tification have been developed [8], [51], [7], [53], [16], [13], [17], 
[25], [23], [27], [24], [20] and [26]. It is desired to build a data 
model capable of answering the following questions: 

Q1. What is the output value associated to an input vector 
x assuming that there were no uncertainties in the input-

output behavior? i.e. what is an estimate of quantity 
( )*; ?M x w  

Q2. What is the worst effect of uncertainties on the model-
predicted output value? That is, what are the estimates of 
the quantities ( )*; LM x w and ( )*; UM x w such that 

( ) ( )* *;   ; ,≤ ≥L UM x w y and M x w y  

where *
Lw and *

Uw are as close to *w as possible. 
Q3. What is the output value associated to an input vector 

x given a priori knowledge regarding the statistical model 
of the uncertainties? That is, what is an estimate of output 
value y as per a given estimate criterion? 

This study proposes a fuzzy model to answer the afore-
mentioned questions. The question Q1 is answered by identi-
fying the parameters *w using recently developed fuzzy filter-
ing algorithms [21], [22]. The question Q2 is addressed, as in 
[32], by solving two independent constrained estimation prob-
lems with the help of a recurrent neural network. To solve the 
problem of question Q3, we stochastically model the uncer-
tainties (provided by the fuzzy filter) using finite-mixture 
models and utilize this information regarding uncertainties for 
identifying the structure and initial parameters of a data mod-
el. A fuzzy model, addressing the Q1 and Q3, has already 
been proposed (in context to real-world applications) in earlier 
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works [18], [30]. In this text, we present the method of [18], 
[30] in a generalized framework of fuzzy filtering. Based on 
the results of research on fuzzy filtering algorithms mainly 
presented in [21], [22], this manuscript proposes a method of 
data modeling in presence of uncertainty that performs better 
than the standard neuro/fuzzy modeling techniques. The 
main contribution of this text is to present a modeling algo-
rithm providing an intergrated framework to develop a data 
model based on different fuzzy filtering algorithms. Although 
the individual components of the proposed framework and 
the basic modeling approach have been previously applied for 
practical applications [18], [30], but we feel that the presenta-
tion of the fuzzy filtering based uncertain data modeling ap-
proach in a generalized manner is worth of fuzzy readership. 

The paper is organized as follows. Section 2 presents some 
background of the method. Section 3 suggests a fuzzy system 
for data modeling. Section 4 deals with the estimation of pa-
rameters of proposed fuzzy system followed by an illustration 
of the method in section 5 and the concluding remarks in sec-
tion 6. 

2  PRELIMINARY 
2.1 A Clustering Based Fuzzy Filter [34, 35, 28, 29, 30, 

36, 18] 
It is required to filter out the uncertainties from the data with 
applications to many real-world modeling problems [34, 35, 
28, 29, 30, 36, 18]. A filter in, the context of our study, simply 
maps an input vector x to the quantity −y n (called filtered 
output = −fy y n ) and thus separates uncertainty n from the 
output value y . The fuzzy filter of [34, 35, 28, 29, 30, 36, 18] 
has K number of fuzzy rules of following type: 

1
1  belongs to a cluster having centre  then 

  belongs to a cluster having centre  then 

a

a

=

=



f

K
K f

If x c y

If x c y

 

where  ∈ n
ic R is the centre of thi  cluster, and the values 

1, ,a a K are real numbers. Based on a clustering criterion, it 
was shown e.g. [18] that  

( )1
1

, , , ,a
=

= ∑ 
K
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f i K

i
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With the notations: 

( ) ( ) ( )

1
1

1

,  ,

, , , ,

a a a θ

θ θ θ

   = ∈ = ∈   
= ∈  

 



TK K T T Kn
K

K
K

R c c R

G x G x G x R
 

The output of fuzzy filter for an input x can be expressed as 
( ), .θ a= T

fy G x  
 

2.2  Finite Mixture Models 

Assume that the 2-dimensional vector  =  
T

fz y n represents 

one particular outcome of a 2-dimensional random variable 
2∈Z R whose probability density function can be written as a 

mixture of the Gaussian distributions:   

 ( ) ( )
1

, ,
=

= Σ∑
C

j j j
j

p z a p z m  such that   (2) 

- The mixing probabilities 1, , Ca a satisfy 0≥ja and 

1
1,

=

=∑
C

j
j

a  

- The parameters 2 ,∈ Σj jm R (a 2x2 positive definite 

matrix) characterize fully the thj Gaussian compo-

nent: ( )
( ) ( )

( )

1

2

1exp
2, .

2p

− − − Σ − 
 Σ =

Σ

T

j j j

j j

j

z m z m
p z m  

We assume that fy and n are independent, i.e., Σ j is a di-
agonal matrix. If  

1 1

2 2

0
, ,

0
   Σ

= Σ =   Σ      

j j
j j

j j

m
m

m
 then     (3) 

( ) ( ) ( )1 1 2 2, , , ,Σ = Σ Σj j f j j j jp z m p y m p n m where 

( )

( )21

1

1 1

1

exp
2

,
2p

 − − Σ  Σ =
Σ

f j

j

f j j

j

y m

p y m , and 
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( )

( )22

2

2 2

2

exp
2

, ,
2p

 − − Σ  Σ =
Σ

j

j

j j

j

n m

p n m     (4) 

Let us define a random variable ,x nF as follows: 

, ,=x nF j if for some data point ,x the filtered value 

( ),θ a= T
fy G x is generated by the probabilistic model 

( )1 1,Σf j jp y m and the uncertainty value n is generated by the 

probabilistic model ( )2 2, .Σj jp n m In other words, , ,=x nF j if 

the data point is generated by the thj probabilistic model 

( ), .Σj jp z m  

 

2.3 The Grouping of Input Vectors 
In many applications, there is a prior knowledge regarding the 
classification of input data such that the data belonging to a 
class either form a cluster or are labeled as of same type. For 
example, in any biomedical application, the data belonging to 
a particular patient can be grouped in a class. Similarly, in 
structure activity applications, the compounds with a similar 
chemical structure can be grouped in a class. Even if no priory 
knowledge is available, it is always possible to divide the in-
put data into different types via performing clustering on the 
data. 

Let 1 2, , , SIG IG IG denote the S different groups into 
which the input vectors are divided. Define a random variable 

( ), 1, 2, , ; 1, 2, , ; 1, 2, ,= = =  i k
jw i S j C k K such that distribu-

tion function of ,i k
jw is given as 

( ) ( ),
,, , .a= ∈ = =i k k

j i x n fp w p y x IG F j y  

That is, ,i k
jw takes its value equal to output value given that 

input x belongs to the group ;i fIG y is generated by the prob-

abilistic model ( )1 1, ,Σf j jp y m uncertainty value n is generated 

by the probabilistic model ( )2 2, ;Σj jp n m and filtered value 

fy is equal to a k (i.e. equal to the consequent of thk rule of the 
fuzzy filter). Since ,= +fy y n therefore 

( )

( )2, 2

2

,

2

exp
2

.
2

a

p

 − − − Σ  =
Σ

i k k
j j

j
i k
j

j

w m

p w  

Let us define a −K dimensional vector i
jw  as follows 

,1 ,2 , . = ∈ 
Ti i i i K K

j j j jw w w w R  
Now, we have 

( )

( ) ( )

( )

1

exp
2

,
2

σ

p σ

− − − − 
  =

i
j

i
j

Ti i i i
j j j jw

i
j

K

w

w w w w

p w     (5) 

2a= +i
j jw m and 2 .σ = Σi

j
jw
I  

 

2.4 A Cooperative Recurrent Neural Network for 
Solving Constrained 1L Estimation Problem [52] 

 
Lemma 1. The constrained L1 estimation problem 

{ }1
min ,− ≤

x
Dx d Ax p       (6) 

Can be solved by the following cooperative recurrent neural network 
model: 

( ) ( ) ( ){ }1 2 3
( ) ,λ= − −T Tdx t F t D F t A F t

dt
   (7) 

( ) ( ){ }1 2
( ) ,λ= +

ds t DF t F t
dt

     (8) 

( ) ( ){ }1 3
( ) ,λ= +

IIdz t AF t F t
dt

      (9) 

where 0λ > is a designing constant and 
 

( )
( )

1

2 1

3 2

( ) ( ) ( ),
( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

= − −

= + − −

= + − −

T T
II

II II

F t D s t A z t
F t gx s t Dx t d s t

F t gx z t Ax t p z t

 

Here, ( ), ( ), ( )IIx t s t z t are state vectors of suitable dimensions and 

1

2

1, 1
( ) , 1 1,

1, 1

, 0
( ) .

0, 0

− < −
= − ≤ ≤
 >

≥
=  <

a
gx a a a

a

a a
gx a

a

 

Proof: The result has been directly taken from [52] 
 
Lemma 2. The cooperative recurrent neural network (7), (8), (9) 

is stable in the sense of Lyapunov and is globally convergent to an 
optimal solution of the estimation problem (6) within a finite time. 

 
Proof: The result has been directly taken from [52]. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013                                                                    495 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

3 A FUZZY SYSTEM FOR DATA MODELING IN PRESENCE 
OF UNCERTAINTIES 

A model with the following K fuzzy rules is considered: 
1)R  If x belongs to a cluster having centre 1c then 

filtered output value 1,a=fy  

lower limit on output value 1 ,a=L Ly  
upper limit on output value 1 ,a=U Uy  
for ,∈ ix IG the output value 

( )

( )

1 1 ,1

1

1 1

1

,
;

,

=

=

Σ
=

Σ

∑

∑

C
i

j f j j j
j

C

j f j j
j

a p y m w
y

a p y m
 

       
)KR  If x belongs to a cluster having centre Kc then  

filtered output value ,a= K
fy  

lower limit on output value ,a= K
L Ly  

upper limit on output value ,a= K
U Uy  

for ,∈ ix IG the output value 

 
( )

( )

1 1 ,

1

1 1

1

,
;

,

=

=

Σ
=

Σ

∑

∑

C
i K

j f j j j
j

C

j f j j
j

a p y m w
y

a p y m
  (10) 

Such a fuzzy model has been successfully applied to real-
world problem in [18], [30], [32]. Introduce the notations: 

1 2 1 2, .a a a a a a a a   = =    
T TK K

L L L L U U U U  

By aggregating these rules, we have 
( ) ( ) ( ), , , , , ,θ a θ a θ a= = =T T T

f L L U Uy G x y G x y G x  

( )
( )

( )

( )
( )

( )

1 1 ,1

1
1

1 1

1

1 1 ,

1

1 1

1

,
,

,

,
     , .

,

θ

θ

=

=

=

=

Σ
= +

Σ

Σ
+

Σ

∑

∑

∑

∑





C
i

j f j j j
j

C

j f j j
j

C
i K

j f j j j
j

K C

j f j j
j

a p y m w
y G x

a p y m

a p y m w
G x

a p y m

 

In other words, 

( ) ( )

( )

1 1

1

1 1

1

, ,
.

,

θ
=

=

Σ
=

Σ

∑

∑

C
T i

j f j j j
j

C

j f j j
j

a p y m G x w
y

a p y m
              (11) 

The motivation of considering such a mathematical expres-
sion for y in (10) is derived from the following fact. 
 
Remark 1 The fuzzy rule based system (10) for any input 
x combines the outputs of C different local models 

( ) ( )( )1 , ,i i
CM x M x valid in the predefined operating regions 

represented by fuzzy sets ( ) ( )( )1 , ,f C fA y A y respectively 

based on the following fuzzy rule base: 
 
For input ,x if the filtered value ( ),θ a= T

fy G x is 1,A  

then ( )1 ;= iy M x     [ ]1a  

    
For input ,x if the filtered value ( ),θ a= T

fy G x is ,CA  

then ( );= i
Cy M x     [ ]Ca     (12) 

Here ( )i
jM x and ( ) ,j fA y for 1, , ,= j C are defined as 

( ) ( ) ( ) ( )1 1, , , .θ= = Σi T i
j j j f f j jM x G x w A y p y m                        (13) 

The value [ ]0,1∈ja is the weight of the rule that represents 

the belief in the accuracy of the thj rule. To see the equivalence 
of (10) and (12), note that the weighted average of the output 
provided by each rule of (12) is equal to (11). 
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4 ESTIMATION OF FUZZY SYSTEM PARAMETERS 
For a data driven construction of the fuzzy model (10), follow-
ing parameters must be estimated using given input –output 
data pairs ( ) ( ){ } 0,1, , .

,
= j N

x j y j  

 
4.1 Estimation of Filtering Parameters ( ),a θ   
 

Lemma 3. A class of algorithms for estimating the parameters of 
Takagi-Sugeno type fuzzy filter recursively using input-output data 
pairs ( ) ( ){ } 0,1,

,
= j

x j y j is given by the following recursions: 

( )arg min ,
θ

θ θ = Ψ j j                                (14) 

( )( ) ( ) ( )( )
( )( ) ( )( )

1
1

, ,
,

1 , ,

θ θ a
a a

θ θ
−

−

 − = +
+

T
j j j j

j j T
j j j

P G x j y j G x j

G x j P G x j
          (15) 

( )
( ) ( )( )

( )( ) ( )( )

2

21 1
1

,
,

1 , , θ

θ a
θ µ θ θ

θ θ
− −

−

−
Ψ = − + −

+

T
j

j jT
j

y j G x j

G x j P G x j
           (16) 

( ) ( )( ) ( )( ) 11
1 1 , , ,γ θ θ

−−
+

 = + + 
T

j j j jP P G x j G x j  

for all 0,1,= j with 1 00, ,a µ− = =P I and 1θ−  is an initial guess 
about antecedents. Here, 1γ ≥ − is a scalar whose different choices, 
as illustrated in table 1, solve the different filtering problems. 

 
Table 1 The value of γ for the different filtering criteria 

 
∞H - optimal like filtering criterion [22] 1γ = −  

Risk-averse like filtering criterion [22] 1 0γ− ≤ <  
Risk-seeking like filtering criterion [22] 0γ >  

 
 
Proof: The result has been directly taken from [22]. 

 
The positive constants θµ in (16) is the learning rate for 

θ (being the co-ordinates of clusters’ centres in −n dimension-
al input space), if assumed as random variables, may have 
different variances depending upon the distribution functions 
of different inputs. Therefore, estimating the elements of 
θ with different learning rates makes a sense. To do this, de-
fine a diagonal matrix Σ (with positive entries on its main di-
agonal): 

( )

( )

( )

1

2

0 0

0 0
,

0 0

θ

θ

θ

µ

µ

µ

 
 
 

Σ =  
 
 
 





  


nK

 

to reformulate (16) as 

( )
( ) ( )( )

( )( ) ( )( ) ( )
2

21 1/ 2
1

,
,

1 , ,

θ a
θ θ θ

θ θ
−

−

−
Ψ = − + Σ −

+

T
j

j jT
j

y j G x j

G x j P G x j
       (17) 

Lemma 4 The adaptive −p norm algorithms for estimating the 
parameters of Takagi-Sugeno type fuzzy filter recursively using in-
put-output data pairs ( ) ( ){ } ,1,

,
= j o

x j y j take a general form of 

( )( ) ( )1
, 1ˆarg min , , ,θθ

θ a θ θ µ θ θ−
−

 = + j j j q jE d                           (18) 

( ) ( ) ( )( )( ) ( )( )( )1
1 1, , ;a a µ φ θ a θ−
− −= + − T

j j j j j jf f y j G x j G x j   (19) 

Here, 
( ) ( ) ( )1

1, , , ,a θ a θ µ a a−
−= +j j j q jE L d  

( ) ( )( ( ) ( )( )( ) ( )( ))1
1 1ˆ , , ,a θ a µ φ θ a θ−
− −= + − T

j j jf f y j G x j G x j

( ) ( ) ( )2 21 1, ,
2 2

= − − − T
q q q

d u w u w u w f w  

Where ( ),, θµ µj j are the learning rates for ( ),a θ respectively, 

f ( a p indexing for f is understood), as defined in [10], is the 

bijective mapping : →K Kf R R such that [ ]1 ,= 
T

Kf f f  

( ) ( ) 1

2 ,
−

−=
q

i i
i q

q

sign w w
f w

w
 

where [ ]1 ,= ∈
T K

Kw w w R q  is dual to p  ( ). . 1 / 1/ 1 ,+ =i e p q  

and  . 
q

denotes the −q norm. 

The different choices of loss term ( ),a θjL lead to the different func-
tional form of φ and thus different types of fuzzy filtering algorithms 
for any ( )2 .≤ ≤ ∞p p Table 2 lists a few examples of fuzzy filter-
ing algorithms. 
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Table 2 A few examples of adaptive fuzzy filtering algorithms [21] 
 

Algorithm ( , )a θjL  ( )φ e  ( , )φP y y  

1, pA  ln(cosh( ( ) ( ( ), ) ))θ a− Ty j G x j  tanh( )e  ln(cosh( )) ln(cosh( )) ( ) tanh( )− − −y y y y y  

2, pA  2
(1/ 2) ( ) ( ( ), )θ a− Ty j G x j  e  2(1/ 2) −y y  

3, pA  4
(1/ 4) ( ) ( ( ), )θ a− Ty j G x j  3e  ( )

4 4
4 3

4 4
− − −

y y y y y  

4, pA  

2

4

( ) ( ( ), )
2

( ) ( ( ), )
4

θ a

θ a

−

+ −

T

T

a y j G x j

b y j G x j
 3+ae be  ( )

4 4
2 4 3

2 4 4
 

− + − − − 
 

a y yy y b y y y  

5, pA  cosh( ( ) ( ( ), ) )θ a− Ty j G x j  sinh( )e  cosh( ) cosh( ) ( )sinh( )− − −y y y y y  

 
 
 

 
The filtering algorithms, with a learning rate of 

( )( )
( )( )( ) ( )( ) ( )

1

2

1 1

2 ,
,

1
φ a

µ
φ a φ φ a

−

− −

=
− − −  

T
j

j T T
j j p

P y j G

y j G p y j G G
        (20) 

Where ( )( ),θ= jG G x j and ( ) ( ) ( )( ), ,φ φ φ= −∫
y

y
P y y r y dr  

achieves a stability and robustness against disturbances in some 
sense. 

 
Proof: The result has been directly taken from [21]. 

 
For a standard algorithm for computing θ j numerically based 
on (18), define 

( )
1

1
12

, 1

1

2 ,
,

1,
θ θ

θ θ
θ θ

θ θ

θ θ
−

−
−

−

−


 ≠= −


=

j

q j
jq

j

j

d
if

k

if

 

to express (18) as 

( )( ) ( )1

1
2, ,

1ˆarg min , .
2

θ θ θ

θ

µ
θ a θ θ θ θ−

−

−

 
= + − 

  

j

q
j

j j j

k
E               (21) 

Choosing a time-invariant learning rate for θ in (21), i.e. 
, ,θ θµ µ=j and estimating the elements of vector θ with differ-

ent learning rates as in (17), (21) finally becomes 

( )( ) ( )1
2, 1/2

1ˆarg min , .
2

θ θ

θ
θ a θ θ θ θ− −

−

 
= + Σ − 

  

j

q

j j j

k
E              (22) 

Define vectors ( )θr and ( )θqr as 

( )
( ) ( )( )

( )( ) ( )( )

( )

1/22

1

1

1/2
1

,

1 , , ,

θ a

θ θθ

θ θ

−

+

−
−

   −   
  += ∈   
 

Σ −  

n

T
j

T K
j

j

y j G x j

G x j P G x jr R               (23) 

( )
( )( )

( )1

1/2 1

, 1/2
1

ˆ ,

,

2
θ θ

a θ θ

θ
θ θ−

+

−
−

 
 
 = ∈    Σ −  
  

n

j

j

Kq
q

j

E

r Rk                             (24) 

So that (14) and (18) can be formulated as 

( )

( )

2

2

arg min , 3

arg min , 4

θ

θ

θ
θ

θ


= 


j

q

r as per Lemma

r as per Lemma
                     (25) 

An algorithm to estimate fuzzy filter parameters based on 
the filtering criteria of either Lemma 3 or Lemma 4 was provid-
ed in [31]. The algorithm has been repeated here in Appendix 
A for the sake of completion. 

 
4.2 Estimation of Parameters ( ),L Ua a  

Once fuzzy filter parameters ( ),a θI I are identified using al-

gorithm 2, to estimate parameters ( ),a aL U with data pairs 

( ) ( ){ } 0,1, ,
, ,

= j N
x j y j define a matrix ( )1+ ×∈ N KA R and a vector 

1+∈ Np R as 

( )( )
( )( )

( )( )

( )
( )

( )

0 , 0
1 , 1

, .

,

θ

θ

θ

         = =            



T I

T I

T I

G x y
G x y

A P

y NG x N

 

Now, a lower and an upper fuzzy approximation to output 
data is provided by solving 

{ }1
ˆ arg min , ,

a
a a a a= − ≤

L

I
L L LA p                (26) 

{ }1
ˆ arg min , .

a
a a a a= − − ≤ −

U

I
U U UA p                               (27) 

Both (26) and (27) can be solved efficiently using Lemma 1. 
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4.3 Estimation of Parameters of finite mixture models 
The uncertainties and filtered values associated to given input-
output data are assessed by defining a set of 2-dimensional 
vectors { }

0,1, ,= j j N
z as 

( )
( ) ( )( )

( )( )
,ˆ

,
,

θ a

θ a

 −   = =      

T I I
j

j T I I
f

y j G x jn
z

f j G x j
                              (28) 

It is assumed that jz represents one particular outcome of a 

2-dimensional random variable 2∈Z R whose probability den-
sity function can be expressed as (2). That is, a finite mixture 
model consisting of C different Gaussian components is fitted 
to the data { }

0,1, ,= j j N
z . 

Further, the covariance of each Gaussian component is cho-
sen to be a diagonal matrix (3). “Expectation-Maximization 
(EM)” is the standard algorithm [41,42] used for the finite mix-
ture modeling of data. In this study, we used the algorithm of 
[9] for estimating the parameters of the mixture (2). This algo-
rithm is capable of automatically selecting the number of 
components .C  The algorithm, unlike EM, is less sensitive to 
initialization and avoids the possibility of algorithm conver-
gence to the boundary of the parameter space. 

 
 

4.4 Estimation of Local Models’ Parameters { }
1,2,...,=

i
j j C

w  

The −K dimensional vector i
jw  characterizes the linear pa-

rameters of thj local model ( )i
jM x for ,∈ ix IG see(13). For an 

estimation of ,i
jw some input-output data pairs, say ,i

jDP must 

be chosen out of total ( )1+N pairs of data 

( ) ( ){ } 0,1, ,
, .

= j N
x j y j As seen in (12) that model ( )i

jM x is asso-

ciated to fuzzy set ( ) ( )1 1, ,= Σj f f j jA y p y m  the data set i
jDP is 

defined as 
( ) ( ){ }, , ( , ) , ,θ a ε= = ≥ ∈i T I I

j j f iDP x y A y G x x IG                 (29) 

Where 0 1.ε≤ <<  i
jDP contains all these input-output data 

pairs whose filtered output values belong to the fuzzy set 

jA at least by a degree .ε To fit data i
jDP through model 

( ) ( ), ,θ=i T i
j jM x G x w  assume that 

( ), ,θ υ= +T I i
jy G x w  ( ), ,θ ∈ i

jx DP   

where υ  is Gaussian with mean 0 and variance 2Σ j (as the un-

certainty associated to thj probabilistic model has a variance 
equal to 2Σ j , see (4)). 

Given the data ,i
jDP distribution of υ (Gaussian with mean 

0 and variance 2Σ j ), and distribution of i
jw (5), the estimation of 

i
jw based on MAP (maximum a posteriori) criterion: 

( )ˆ arg=
i
j

i i i
j j j

w
w max p w DP                               (30) 

is equivalent to estimating i
jw using well known recursive 

least-squares (RLS) algorithm. 
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4.5 An Algorithm for data Modeling in Presence of 

Uncertainties. 
 
Algorithm 1 finaly summarizes the different steps to identify a 
model of type (10) using given input-output data pairs. For a 
given input vector ∈ ix IG , the parameters returned by algo-
rithm 1, can be used to estimate 

 
- fitered output ( ), ,θ a= T I I

fy G x  

- lower limit on output ( ) ˆ, ,θ a= T I
L Ly G x  

- upper limit on output ( ) ˆ, ,θ a= T I
Uy G x U  

- output value  

( ) ( )

( )

1 1

1

1 1

1

ˆ, ,
.

,

θ
=

=

∑
=

∑

∑

∑

C
T I i

j f j j j
j

C

j f j j
j

a p y m G x w
y

a p y m
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Algorithm 1 An algorithm for data modeling in presence of 
uncertainties. 
Require: Training data pairs ( ) ( ){ } 0,1, ,

,
= j N

x j y j (input and 

output variables have been normalized to have zero means 
and unity variances). 
1: Choose the number of maximum epochs max .E A clustering 

on the input-output data of training set, via Gaussian mix-
ture models of [9] with a common diagonal covariance for 
all clusters, can be performed to choose the  
- Number of clusters (i.e. rules) ;K  
- Initial guess about the clusters’ centres 1;θ−  
- Learning rate µ for a equal to the variance of the 

clusters on output dimensions; 
- Learning rates ( ) ( ) ( )( )1 2, , ,θ θ θµ µ µ

nK equal to the vari-

ances of different elements of 1.θ−  
These choices are required at step 1 of algorithm 2. 
2: Identify fuzzy filter parameters ( ),a θI I using algorithm2. 

3: Solve (26) and (27) to compute â L and âU using Lemma 1 
(i.e. simulate the model (7), (8) and (9) taking some 

0λ > from 0=t to the time that solution takes to converge). 
4: Compute { }

0,1, ,= j j N
z as per (28) and estimate the parame-

ters of the finite mixture model (2) using e.g. the algorithms 
of [9]. 

5: for 1=i to S  do 
6:  for 1=j to C do 
7: Obtain the data set i

jDP as per(29). The parame-
ter ε in (29) can be chosen in such a way that all 
data pairs for ,∈ ix IG whose filtered output val-

ue fy lies at 13± Σ j from mean 1 ,jm are included 

in .i
jDP  

8: Compute ˆ i
jw based on (30) using recursive least-

squares (RLS) algorithm. Perform several epochs 
of the RLS algorithm till either the parameters 
converge or the maximum number of epochs 

maxE is reached. 
9:  end for 
10: end for 
11. return ( ), ;a θI I  ( )ˆ ˆ, ;a aL U  { }1 1

1,2, ,
, , ;

=
Σ

j j j j C
a m  

{ }
1,2, , ; 1,2, ,

ˆ
= = 

i
j i S j C

w . 
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5 AN EXAMPLE 
To illustrate the proposed approach, a problem of develop-
ment of a model mapping 10-dimensional input vector to the 
output scalar is considered. Table 3 and 4 in B list the training 
data for an identification of the model. The testing data for the 
validation of the model are listed in table  5 of B. This data 
have been taken from a case study of [30] dealing with the 
modeling of biological activity of 3-phosphoinositide-
dependent protein kinase-1 (PDK1) inhibitors. The input and 
output variables were normalized to have zero means and 
unity variances. The normalized data have been used to de-
velop a model using some standard methods and the pro-
posed method. 

We start with the training of a Sugeno-type fuzzy model 
using a built-in training algorithm in the MATLAB Fuzzy Log-
ic Toolbox (“anfis” command). The “anfis” algorithm is a 
standard fuzzy modeling technique that combines the least-
square and backpropagation gradient descent methods to 
identify the parameters of the fuzzy model. The structures and 
initial parameters of the fuzzy models for “anfis” training 
were generated using subtractive clustering (MATLAB Fuzzy 
Logic Toolbox command “genfis2” with a “range of influence” 
of the cluster center for each input and output dimension var-
ying from 1 to 3). The “range of influence” affects the structure 
and initial parameters of the generated model. Table 6 in C 
lists the performance of “anfis” algorithm in terms of coeffi-
cient of determination 2( )R and mean squared error (MSE) on 
training and testing data for different models (generated at 
different “range of influence”). The different values of “range 
of influence” were considered to search for an optimal struc-
ture of the fuzzy model. However, in case of our data, the 
“range of influence” couldn’t be increased beyond 2.82 since 
this resulted in a fuzzy model of less than two rules (i.e. not a 
valid model for “anfis” training). The training of the model 
continued till 100 epochs. 

Bayesian regularized neural networks are considered suit-
able for data modeling in presence of uncertainties, see e.g. [4], 
[5] and [6] in context of structure-activity modeling. Bayesian 
regularization provides an optimal level of regularization to 
the modeling problem by applying Bayes’ theorem [40]. For a 
Bayesian regularized training consider a 3-layer feed-forward 
neural network with hyperbolic tangent sigmoid transfer func-
tion in the first and second layer while a linear transfer func-
tion in the output layer. The training algorithm has been run 
until the number of effective parameters has converged. Table 
7 in C lists the performance of Bayesian regularization back-
propagation learning algorithm (MATLAB Neural Network 
Toolbox command “trainbr”) for different number of neurons 
in the layers of the network. 

In tables 6, 7 a poor performance of “anfis” and “trainbr” 
algorithms on testing data (despite a good performance on 
training data) indicates that a large uncertainties exit in in-
puts-output relationships and therefore its modeling is a chal-
lenge. Tables 6, 7 provide a reference for comparing the per-
formance of the proposed modeling method. Algorithm 1 was 
used for data modeling with filtering criteria of Lemma 3 and 
Lemma 4. First of all, input vectors were divided into different 
groups by performing clustering using Gaussian mixer mod-
els [9] on the total input data. The clustering method of [9] 
resulted in 25 different clusters (i.e. 25=S and 25 input 
groups 1 2 25, , ,IG IG IG ). The numbers of maximum epochs 

maxE in algorithm 1 was taken equal to 10. At step 3 of algo-
rithm 1, 100λ = was taken and the simulation of model(7), (8) 
and (9) runs from 0=t  to 10=t . Tables 8 and 9 in C state the 
performance of the proposed method. The filtering algorithm 
of Lemma 3 for different values of γ was used in table 8. Each 
of five filtering algorithms of table 2 was used in table 9 for a 
smaller value of p (i.e. 2=p ) as well as for a fairly large val-
ue of p (i.e. 2ln( ),=p K where K is the number of rules in 
filter). 

While modeling the data in presence of uncertainties, the 
model is typically overtrained leading to a loss of generaliza-
tion performance as observed in table 6 and 7.  A comparison 
among tables 6, 7, 8 and 9 verifies the effectiveness of the al-
gorithm 1. The generalization performance of a model is as-
sessed by its performance on the testing data. Figure 1 com-
pares the generalization performance of the studied models. 
The better performance of the filtering based method is clearly 
observable from figure 1. Even the worst performance of algo-
rithm 1 is better than the best performance of “anfis” and 
“trainbr” algorithms. For an illustration, figure 2 shows the 
model predicted value as well as the lower and upper limits 
when algorithm 1 was used with the filtering algo-
rithm 5,2 ln( )KA . 
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(a) A  comparison in terms of 2R - testing    (b)     A comparison in terms of MSE - testing 

 
Fig. 1 The generalization performance comparison of the proposed algorithm with “anfis” and “trainbr” algorithms. 

 

 

Fig. 2 An illustration of data modeling using algorithm 1 with the filtering algorithm 5,2 ln( )KA . 

6 CONCLUDING REMARKS 
The authors believe that fuzzy filtering methods have much to 
offer in real-world modeling applications [34, 18, 35, 36, 28, 19, 
30, and 29]. Our investigations with many modeling problems 
related to life science have shown that the standard neu-
ro/fuzzy modeling techniques fail to the process behavior. 
This stydy outlines a fuzzy filtering based modeling technique 
that may be beneficial in the handling of uncertain processes. 
The proposed methos relies on the recently developed fuzzy 
filtering algorithms [21], [22] and stochastic modeling of the 
uncertainties (which are separated from data through the 
fuzzy filter) using finite mixture models. 

 

 
The major limitation of our method is that it was a multi-

step procedure involving different computational algorithms 
and therefore it was not easy to study the overall performance 
of the algorithm in an analytical manner. 
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Appendix A The Filtering Algorithm 
 
 
 
Algorithm 2 Fuzzy filtering algorithm [31]. 
 
Require: Data pairs ( ) ( ){ } 0,1, ,

,
= j N

x j y j . 

1: Choose the number of rules K ; initial guess about the antecedents 1;θ− positive learning rate µ fora ; positive learning rates 

( )(1) (2) ( ), , ,θ θ θµ µ µ L for different elements ofθ ; number of maximum epochs max .E  

2: Set data index 0;=j epoch count 0;=EC initial guess about consequents 1 0.a− =  
3: Choose a filtering criterion: either of Lemma 3 or of Lemma 4. 
4: while max<EC EC do 
5:  while ≤j N do 
6:  if filtering criterion of Lemma 3 then 
7:  Choose a value of 1.γ ≥ −  

8: Define ( )θr as(23). Let ( )θ∗s be the unique solution of following linear least squares problem: 

( ) ( ) ( ) 2
arg min ,θ θ θ∗  ′= +

 s
s r r s  

where ( )θ′r is the Jacobian matrix of vector r with respect to ,θ determined by the method of finite-differences. The Ja-

cobian ( )θ′r is a full rank matrix, since the main diagonal of the diagonal matrix Σ has positive entries. 

9: Compute θ j based on (25) using a Gauss-Newton like algorithm: ( )1 1 .θ θ θ∗
− −= +j j js  

10: Compute a j using (15). 

11:  else {filtering criterion of Lemma 4} 
12: Choose an algorithm out of the 5 different algorithms ( )1, 2, 3, 4, 5,, , , ,p p p p pA A A A A and a value of ( )2 .≤ ≤ ∞p p  

13: Define ( ) ( ) ( ), , , ,φa θ φjL e P y y as per table 2 depending upon the choice of algorithm. 

14: Define ( )θqr as (24) and let ( )θ∗
qs be the unique solution of following linear least-squares problem: 

( ) ( ) ( ) 2
arg min ,θ θ θ∗  ′= +  q qs

s r r s where ( )θ′qr is the Jacobian matrix of vector qr  with respect to .θ  

15: Compute θ j based on (25) using a Gauss-Newton like algorithm: ( )1 1 .θ θ θ∗
− −= +j j q js  

16: Compute a j using (19) with the learning rate provided by (20). 

17: end if 
18: 1← +j j  
19: end while 
20: 1 11; ; ; 0.a a θ θ− −← + = = =N NEC EC j  
21: end while 
22: return identified fuzzy filter parameters a a=I

N and .θ θ=I
N  
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Appendix B The Training and Testing Data Sets 
 
 

Table 3 The training data 
  

1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  y  

1.5560 0.5820 0 0 0.7340 0 0.5250 3.3430 0.1720 0 5.5677 
2.6820 0.5910 0 7.0000 0.9000 1.0000 0.6270 -0.4170 0.1710 2.2800 5.0540 
2.7560 0.5920 0 56.0000 1.7180 0 0.5430 1.1090 0.1580 2.4220 7.4685 
2.8830 0.5860 0 18.0000 2.6000 0 0.4440 2.4370 0.1760 2.1790 7.2218 
1.9050 0.5760 0 0 0.5720 0 0.2870 2.1160 0.1980 1.4350 5.7447 
2.4360 0.5770 0 0 0.8830 0 0.2800 1.2220 0.2030 1.6640 6.0000 
2.5320 0.5940 0 22.0000 2.6090 0 0.4430 3.0900 0.1690 1.8530 7.3979 
2.2320 0.5780 0 3.0000 1.7960 0 0.4200 3.0780 0.1770 1.4910 5.1278 
3.1400 0.5830 0 4.0000 1.7090 0 0.5550 2.7950 0.1900 2.0540 6.0000 
2.7120 0.5950 0 14.0000 1.5890 0 0.4870 2.4230 0.1700 1.9670 7.5376 
3.1770 0.5860 1.0000 38.0000 1.5260 1.0000 0.5430 2.3190 0.1420 2.7630 7.4089 
2.3670 0.6000 0 6.0000 0.8880 0 0.2990 2.4810 0.1970 1.8590 5.9586 
2.5390 0.5810 0 14.0000 0.9230 0 0.3090 1.9720 0.1670 2.1190 6.1739 
2.5100 0.5880 0 3.0000 2.4180 0 0.4110 3.3570 0.1820 1.7080 6.5850 
2.7040 0.5990 0 14.0000 1.4530 0 0.4980 1.8470 0.1610 2.0580 7.8539 
2.7360 0.5710 1.0000 0 1.1710 1.0000 0.4880 2.9360 0.1490 2.2150 7.9208 
2.1910 0.5850 0 0 0.9680 0 0.2730 2.6020 0.1710 1.5850 4.5850 
2.5480 0.5980 0 16.0000 1.1230 0 0.4490 1.5000 0.1950 2.0220 6.2757 
2.5470 0.5820 0 8.0000 0.9630 0 0.3570 1.2370 0.1740 2.0890 7.2596 
2.8800 0.5860 0 9.0000 2.6000 0 0.4050 2.2620 0.1670 2.0690 6.5229 
2.3550 0.5910 0 6.0000 1.1730 0 0.3620 2.2950 0.1690 1.7470 7.0969 
2.7660 0.5930 0 35.0000 1.8780 0 0.6160 1.0160 0.1630 2.3750 5.2676 
2.5360 0.6050 0 14.0000 1.0430 0 0.3890 0.9440 0.1860 1.9670 6.5376 
2.5350 0.5910 0 3.0000 2.6090 0 0.3600 4.1910 0.1600 1.7780 5.9281 
2.5250 0.5820 0 0 0.8530 0 0.3460 1.4950 0.1680 1.4350 6.6990 
2.3050 0.5860 0 0 0.8430 0 0.2540 2.6020 0.1710 1.5850 5.5686 
2.3670 0.5940 0 6.0000 0.8880 0 0.2870 2.3350 0.1880 1.7470 6.5528 
2.2170 0.5850 0 5.0000 0.9680 0 0.3090 1.8490 0.1740 1.6210 4.5850 
2.3540 0.5860 0 6.0000 0.8430 0 0.3040 1.8490 0.1950 1.6210 6.4685 
2.7480 0.6060 0 35.0000 1.7180 0 0.5690 -0.0930 0.1630 2.2980 5.4089 
2.8260 0.5790 1.0000 28.0000 1.4090 1.0000 0.4090 0.9890 0.1500 2.4580 7.7696 
2.3670 0.5940 0 6.0000 0.8880 0 0.3110 1.9940 0.1880 1.7470 6.1675 
2.3710 0.5850 0 6.0000 1.0130 0 0.3390 2.6610 0.1820 1.7470 5.6383 
2.2300 0.5860 0 0 0.8430 0 0.2770 1.3700 0.1830 1.5260 6.2366 
2.5130 0.5890 0 3.0000 2.3780 0 0.4320 2.1240 0.1580 1.6560 6.1739 
2.8230 0.5830 1.0000 8.0000 1.2090 1.0000 0.4140 2.5450 0.1690 2.0540 7.6778 
2.8850 0.5790 1.0000 68.0000 1.4090 1.0000 0.4340 0.0610 0.1470 2.6330 7.5376 
2.9170 0.5900 1.0000 34.0000 1.5610 1.0000 0.4820 1.5470 0.1640 2.3610 8.3010 
2.8070 0.5840 1.0000 8.0000 1.6210 1.0000 0.4480 1.7590 0.1550 2.1040 8.0458 
3.0560 0.5910 0 4.0000 1.6240 0 0.5310 4.0470 0.1720 2.1040 4.8539 
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Table 4 The training data continued from table 3 
 
  

1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  y  

2.9190 0.5800 1.0000 34.0000 1.6320 1.0000 0.4090 2.8090 0.1550 2.5010 8.3979 
2.8270 0.5880 1.0000 8.0000 1.4810 1.0000 0.4690 2.7510 0.1920 2.2310 7.2924 
2.7820 0.5870 1.0000 8.0000 1.2930 1.0000 0.4020 1.4730 0.1630 2.1380 8.3010 
2.9850 0.5900 1.0000 32.0000 1.9260 1.0000 0.4930 1.2270 0.1780 2.6560 8.3979 
2.3510 0.5860 0 6.0000 0.7630 0 0.3140 1.8490 0.1740 1.6210 6.0458 
2.8040 0.5780 1.0000 8.0000 1.5090 1.0000 0.4570 1.3550 0.1640 2.0540 8.0000 
2.9860 0.5850 1.0000 32.0000 1.7340 1.0000 0.4830 -0.2660 0.1560 2.6840 8.3010 
2.9850 0.5850 1.0000 32.0000 1.7340 1.0000 0.4960 0.6910 0.1660 2.6280 8.2218 
2.8260 0.5810 1.0000 28.0000 1.3830 1.0000 0.4230 0.0320 0.1660 2.4580 7.8539 
2.8300 0.5700 1.0000 16.0000 1.4560 1.0000 0.5950 3.7040 0.1530 2.4410 8.2218 
2.5860 0.5910 0 0 2.6090 0 0.3720 2.5740 0.1640 1.8250 5.6038 
3.0390 0.5860 0 4.0000 1.5790 0 0.5620 3.5570 0.1640 2.1040 5.0458 
2.7510 0.5920 0 35.0000 1.7180 0 0.5400 0.4610 0.1820 2.3370 5.2147 
2.9190 0.5900 1.0000 60.0000 1.5610 1.0000 0.4960 2.1490 0.1860 2.4030 7.3468 
2.5390 0.5890 0 14.0000 0.9230 0 0.3370 1.7210 0.1900 2.0100 6.5850 
2.1770 0.5840 0 5.0000 0.8880 0 0.3600 1.8490 0.1740 1.6210 6.0000 
2.9840 0.5840 1.0000 61.0000 1.7030 1.0000 0.4480 0.1420 0.1530 2.6320 8.0000 
2.8260 0.5920 1.0000 48.0000 1.3380 1.0000 0.4750 0.6310 0.1630 2.4030 8.0458 
2.9840 0.5850 1.0000 32.0000 1.7340 1.0000 0.5110 1.1140 0.1770 2.5140 8.3010 
3.2700 0.6050 0 38.0000 4.0870 0 0.7720 3.4800 0.1440 2.3780 8.3010 
2.8240 0.5880 1.0000 32.0000 1.4810 1.0000 0.4270 2.2780 0.1560 2.1590 8.2218 
2.8230 0.5830 1.0000 8.0000 1.2090 1.0000 0.4360 1.3940 0.1700 2.0540 8.0969 
2.8260 0.5830 1.0000 28.0000 1.4180 1.0000 0.4290 0.3730 0.1650 2.5010 7.5686 
2.9840 0.5800 1.0000 32.0000 1.9340 1.0000 0.4570 1.7720 0.1540 2.6560 8.5229 
2.9840 0.5840 1.0000 32.0000 1.7030 1.0000 0.4430 -0.1480 0.1630 2.5980 8.3010 
2.9830 0.5870 1.0000 32.0000 1.7030 1.0000 0.4330 0.6000 0.1650 2.5680 8.0969 
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Table 5 The testing data  

 

1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  y  

2.6520 0.5880 0 3.0000 1.5390 0 0.3120 4.5780 0.1560 1.2750 6.3536 
2.5260 0.5940 0 3.0000 2.6090 0 0.4390 2.6100 0.1900 1.7780 7.2218 
2.5520 0.5940 0 3.0000 2.6090 0 0.4990 4.0210 0.1820 1.9570 5.6737 
2.5270 0.6020 0 0 2.4890 0 0.5130 2.8320 0.1730 1.7420 6.2366 
2.8840 0.5830 0 10.0000 2.6800 0 0.3940 2.3240 0.1510 2.0690 6.5376 
2.8840 0.5830 0 10.0000 2.6800 0 0.3940 2.3240 0.1510 2.0690 6.5376 
2.5450 0.5770 0 0 0.8830 0 0.3270 1.9950 0.1850 2.1920 6.0044 
2.4920 0.5770 0 6.0000 0.8830 0 0.2860 2.1000 0.1880 1.7780 6.2366 
2.3640 0.5940 0 6.0000 0.8430 0 0.3110 2.3350 0.2060 1.7470 6.5528 
3.1520 0.5890 0 21.0000 1.9940 0 0.5820 3.4790 0.1640 2.3340 6.1249 
2.5390 0.5890 0 7.0000 0.9230 0 0.3220 1.1180 0.1690 1.9460 6.9208 
2.5350 0.5820 0 3.0000 2.6090 0 0.3720 3.3080 0.1610 1.7780 6.5686 
3.0390 0.5790 0 4.0000 1.5790 0 0.5690 2.5890 0.1750 2.0010 5.3979 
2.1420 0.5840 0 0 0.8880 0 0.3880 2.6020 0.1900 1.5850 6.2924 
2.9840 0.5850 1.0000 32.0000 1.7340 1.0000 0.5110 1.1140 0.1960 2.5140 8.0000 
2.5790 0.5880 0 0 2.6890 0 0.3420 2.6370 0.1810 1.8250 6.0132 
2.5860 0.5880 0 3.0000 2.6890 0 0.3360 2.8110 0.1590 1.9630 6.6990 
2.5470 0.5820 1.0000 8.0000 0.9630 1.0000 0.3870 1.0270 0.1670 2.0540 7.7447 
2.8160 0.5860 1.0000 8.0000 1.5430 1.0000 0.4130 0.5790 0.1710 2.2580 8.0000 
2.8310 0.5790 1.0000 28.0000 1.4090 1.0000 0.4200 1.2910 0.1700 2.5010 7.9586 
2.8260 0.5830 1.0000 32.0000 1.5210 1.0000 0.4360 2.5290 0.1640 2.2530 7.7212 
3.2950 0.5920 1.0000 56.0000 1.3380 1.0000 0.3650 1.7540 0.1630 2.6230 7.2441 
2.9100 0.5960 1.0000 48.0000 1.3380 1.0000 0.4990 1.1170 0.1600 2.4630 8.0458 
2.8250 0.5830 1.0000 8.0000 1.5210 1.0000 0.4190 1.6510 0.1730 2.1840 8.5229 
2.9480 0.5850 1.0000 36.0000 1.6010 1.0000 0.4550 1.6650 0.1610 2.4580 8.0969 
2.6970 0.6090 0 14.0000 1.3730 0 0.4510 1.3910 0.1730 2.0580 7.1739 
2.7510 0.6060 0 56.0000 1.7180 0 0.6020 0.5090 0.1640 2.3430 5.3768 
2.8240 0.5880 1.0000 8.0000 1.4810 1.0000 0.4020 3.0310 0.1860 2.1380 7.4318 
3.1550 0.5890 1.0000 56.0000 1.2930 1.0000 0.3770 1.6080 0.1550 2.5730 7.4089 
2.9950 0.5950 1.0000 28.0000 1.7480 1.0000 0.4750 0.4890 0.1570 2.5340 7.5086 
3.2560 0.6030 0 19.0000 3.9220 0 0.7400 3.8200 0.1440 2.2950 8.1871 
2.7940 0.5780 1.0000 8.0000 1.3730 1.0000 0.4420 1.9290 0.1600 2.1380 8.5229 
2.9190 0.5830 1.0000 34.0000 1.6410 1.0000 0.4250 1.8920 0.1600 2.5010 8.3979 
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Appendix C The Performance Tables 
 

 
Table 6 The performance of “anfis” training algorithm 

 

Initial fuzzy model 2R - training 2R - testing MSE-training MSE-testing 

“genfis2”, “range of influence” = 1 0.9759 0.3328 0.0321 1.1430 

“genfis2”, “range of influence” = 1.2 0.9203 0.5950 0.1062 0.4764 

“genfis2”, “range of influence” = 1.4 0.9206 0.5806 0.1059 0.4976 

“genfis2”, “range of influence” = 1.6 0.9159 0.5820 0.1121 0.4779 

“genfis2”, “range of influence” = 1.8 0.8970 0.6376 0.1373 0.3838 

“genfis2”, “range of influence” = 2 0.8914 0.6658 0.1448 0.3537 

“genfis2”, “range of influence” = 2.2 0.8859 0.7269 0.1521 0.2922 

“genfis2”, “range of influence” = 2.4 0.8847 0.7296 0.1537 0.2887 

“genfis2”, “range of influence” = 2.6 0.8835 0.7278 0.1553 0.2906 

“genfis2”, “range of influence” = 2.82 0.8788 0.7331 0.1615 0.3201 
 
 
 
 
 
 

Table 7 The performance of “trainbr” training algorithm 
 

Number of neurons in  
first, second, third layer 

2R - training 2R - testing MSE-training MSE-testing 

2,4,1 0.7488 0.6573 0.3359 0.3255 
2,8,1 0.7484 0.6574 0.3364 0.3261 

2,12,1 0.7484 0.6576 0.3365 0.3262 
3,4,1 0.9028 0.6835 0.1305 0.3246 
3,8,1 0.9026 0.6837 0.1308 0.3246 

3,12,1 0.8997 0.6837 0.1346 0.3098 
4,4,1 0.9723 0.5162 0.0371 0.5452 
4,8,1 0.9593 0.6248 0.0547 0.4538 

4,12,1 0.9807 0.4015 0.0258 0.7292 
5,4,1 0.9945 0.4598 0.0073 0.8684 
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Table 8 The performance of algorithm 1 with the filtering criteria of Lemma 3 
 

γ  2R - training 2R - testing MSE-training MSE-testing 

-1 0.9212 0.7952 0.1056 0.1868 
-0.8 0.9210 0.7947 0.1059 0.1867 
-0.6 0.9210 0.7931 0.1058 0.1883 
-0.4 0.9234 0.7871 0.1027 0.1953 
-0.2 0.9235 0.7819 0.1026 0.2007 

0.01 0.9237 0.7783 0.1023 0.2059 
0.3 0.9238 0.7798 0.1022 0.2032 
0.5 0.9244 0.7719 0.1012 0.2088 
0.7 0.9241 0.7781 0.1019 0.2055 
0.9 0.9246 0.7780 0.1012 0.2056 

 
 
 
 

Table 9 The performance of algorithm 1 with the filtering criteria of Lemma 4. Each of five filtering algorithms of table 2 is used 
for a smaller value of ( . . 2)=p i e p as well as for a fairly large value of ( . . 2 ln( ),=p i e p K  where K  is the number of rules 

in the filter). 
 

algorithm 2R - training 2R - testing MSE-training MSE-testing 

1,2A  0.9015 0.7556 0.1313 0.2381 

1,2 ln( )KA  0.9107 0.8157 0.1195 0.1739 

2,2A  0.9112 0.7572 0.1184 0.2355 

2,2 ln( )KA  0.9165 0.8129 0.1120 0.1821 

3,2A  0.9194 0.7434 0.1076 0.2376 

3,2 ln( )KA  0.9336 0.8065 0.0890 0.1788 

4,2A  0.9206 0.7615 0.1063 0.2207 

4,2 ln( )KA  0.9251 0.8143 0.1004 0.1750 

5,2A  0.9274 0.7520 0.0970 0.2253 

5,2 ln( )KA  0.9235 0.8125 0.1027 0.1803 
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